

over-indebtedness does not speak with one voice:

Profiling and predicting over-indebtedness

Mário B. Ferreira Lisbon University

online seminar on good practices in debt advice

European Commission

Centre for European Policy Studies

Over-indebtedness and Credit use

- Contracting debt is common among many households in the process of obtaining necessary goods and services, such as a place to live or getting a college degree.
- However, the estimation of what is a financially acceptable level of debt for a consumer, given her prospective income stream, may be a difficult matter.
- An unfortunate consequence of such difficulty, is the rising of **over-indebtedness** among European households.

over-indebtedness: the recurrent inability to meet essential living expenses and repaying credits when they are due

Consequences of over-indebtedness

- Over-indebtedness has considerable consequences both for individuals and for society:
 - Over-indebted households report reduced standard of living, deterioration of wellbeing, health, financial exclusion (i.e., limited access to bank and credit services); and social stigma
 - Systemic over-indebtedness may create a feedback loop in which indebted households cut back in consumption, decreasing demand, which, in turn, decreases production... cooling down the economic activity (...increasing unemployment, etc.)

Risk factors of over-indebtedness

Risk factors of over-indebtedness

- Research have linked all these risk factors to over-indebtedness.
- However, most studies have provided evidence for the causal role of each of these factors "ceteris paribus" (i.e., assuming that all the remaining factors are held constant)
- Actual cases of over-indebted households are likely to be multifactorial.
- How different risk factors combine in producing concrete situations of overindebtedness is a highly important issue that has received less research attention.
- we hypothesize that "over-indebtedness" may be a misnomer because it puts under the same conceptual umbrella distinct profiles of indebted households.

Our goals

- Testing for the existence of different profiles of over-indebted households
- identifying the main features of the profiles (if and when they emerge from the data)
- to create predictive models of classification of new cases (households) of overindebtedness or under risk of over-indebtedness

• to achieve these goals, the research approach combined unsupervised and supervised Machine Learning (ML) techniques, to analyze a large number of descriptive and predictive models of over-indebtedness.

Study

- We analyzed the data of the population of 1654 consumers nationwide who contacted the debt advisory services in Portugal during the years of 2016 and 2017
- When consumers contact the debt advisory services, they are over-indebted and cannot pay their bills anymore, having a high risk of poverty.
- The dataset comprises a broad range of variables to understand the full picture of consumers' finnancial health: family socio-demographics, total income, total expenses, employment information, credit details as well as consumers perceived causes of over-indebtedness.

Supervised Machine Learning algorithms used

Fig. 1. Supervised Machine Learning algorithms that have been used in this work.

Fig. 2. Grid Search Hyperparameters Tuning Process.

The wining model identified 3 profiles of over-indebedness

Low-income households	Low credit control households	Crisis-affected households

Low-income households	
Medium-sized households with the lowest:	
- income per capita; - total credit monthly	
installment - credit effort rate	
Lowest unemployment	
100% atribute financial difficulties to causes not directly related to the crisis	

Causes not related to crisis: death in the family, divorce, illness/incapacity to work...

Low-income households	Low credit control households
Medium-sized households with	Smaller households with the
the lowest: - income per capita;	highest income per capita
- total credit monthly	Indications of low credit
installmentcredit effort rate	control:highest personal credit ratehighest credit effort rate
Lowest unemployment	lowest household expenses
100% atribute financial difficulties to causes not directly related to the crisis	84% atribute financial difficulties to causes not directly related to the crisis

Causes not related to crisis: death in the family, divorce, illness/incapacity to work...

Low-income households	Low credit control households	Crisis-affected households
Medium-sized households with the lowest: - income per capita; - credit effort rate - total credit monthly installment	Smaller households with the highest income per capita Indications of low credit control: - highest personal credit rate - highest credit effort rate	 largest households; low income per capita; with the highest: household expenses provision with housing and other credits housing credit effort rate
Lowest unemployment	lowest household expenses	
100% atribute financial difficulties to causes not directly related to the crisis	84% atribute financial difficulties to causes not directly related to the crisis	83,7% attribute financial difficulties to crisis-related causes

Crisis-related causes: unemployment, delays in salary payment, salary cuts, ...

Over-indebtedness as a multifaceted phenomenon

Summing up

- Using Machine Learning algorithms it was possible:
 - To identify different profiles of over-indebtedness
 - To predict the profile of new cases of over-indebted households with high accuracy level (89.5%)

Limitations

- Lack of more detailed data concerning several of the psychological and situational risk factors.
- We are looking forward to measure consumers:
 - tendency to rely on improper heuristics
 - self-control
 - innumeracy
 - attitudes towards credit, etc.
- To obtain more fine-grained information and improve the AI model ability to describe, classify, and predict over-indebtedness.

Implications for debt advise practice

How Artificial Intelligence can improve interventions to fight overindebtedness

- Over-indebtedness speaks in different voices as indicated by the surfacing of different profiles - involving different risk factors
- There is no "one fits all solution" when it comes to fighting and preventing overindebtedness
- The effectiveness of interventions to counteract and prevent families from becoming over-indebted may be increased if they are adapted to each profile
- Government programs and Interventions could be tailored to better respond to the specific chalenges faced by the different profiles.

Implications for debt advise practice

How Artificial Intelligence can improve interventions to fight overindebtedness

- Each case of over-indebtedness is likely to be unique
- The idiosyncrasies of "real-life" cases of overindebted families are not fully captured by any of the 3 identified profiles
- Al Profiling should not be seen as a "solution" but as a tool for debt advise practice
- With this in mind, we developed a software App (beta version) that:
 - classifies new cases of over-indebtedness into one of the 3 described profiles
 - is able to also classifiy non-overindebted consumers based on their similarity (feature overlap) with the different profiles of over-indebtedness.
- This App provides a quick outline of the financial situation of the household (including alerts and suggestions), and could be used by debt advise experts/consumers as and aid for decision making.

Research team

- Diego Costa Pinto
- Márcia Maurer Herter
- Jerônimo Soro
- Leonardo Vanneschi
- Mauro Castelli
- Fernando Peres

Thank you for your time!

mferreira@fp.ul.pt