CEPS Carbon Market Forum

29 June 2015

Free allocation in the EU ETS How to model the different options?

Stefan P. Schleicher

Wegener Center at the University of Graz

Before modeling: Understanding the current state of free allocation

Cement

Free allowances 2014

Net supply

Cement

Change of free allowances vs. change of emissions

Net supply

What are the options for free allocation?

The current rigid scheme for free allocation

 Volumes of free and auctioned allowances are (mainly) predetermined

free allocation = historic benchmark x historic activity level x cross-sectoral correction factor

Switching to a flexible scheme for free allocation

 Volumes of free allowances are ex post adjusted to activity levels

free allocation = recent benchmark x recent activity level

- This requires compensating actions for maintaining the emissions cap that is defined by the target path
- We identify three options for these compensating actions

Targeted benchmarks

- Free allocation for sectors or installations, based on transparent criteria:
 - exposure to export and import competition
 - non-energetic emissions
 - indirect emissions
- This would ensure a riskbased assessment which moves beyond the current in/out-system, to a more gradual, targeted approach to free allocation

Compensating actions for maintaining the overall cap defined by the target path

Adjusting deviations from targeted free allowances

- without a reserve
- with a reserve
- with the auctioning volume and a reserve

How to define and measure the "success" of options for free allocation?

For installations the "success" of free allocation is measured by the impact on value added and operating surplus

Will these different options for free allocations have different impacts on the carbon market?

- Probably not, since the scarcity (stringency) of allowances remains unchanged
- For a long time there will be plenty of surplus allowances in the market

How to model the different options for free allocation?

Simulating schemes for free allocations Non-metallic minerals

Carbon price	[€/ton (CO2e]	20	20
Share of free allooc. in emiss. [%]			0	80
Share of cost path-through [%]		0	10	
Change of Operating Surplus (net)			28,4%	2,8%

Evaluating the impact of schemes for free allocations

- For installations finally the effective carbon costs are relevant that have an impact on the operating surplus
- The effective carbon costs are the result of
 - Carbon price
 - Share of free allowances in verified emissions
 - Pass-through coefficient
- The relation of effective carbon costs to operating surplus triggers changes in operating and investment decisions

References

Schleicher, S. A. Marcu, A. Köppl et al. (2015). Scanning the Options for a Structural Reform of the EU Emissions Trading System. CEPS Special Report.

http://www.ceps.eu/publications/scanning-optionsstructural-reform-eu-emissions-trading-system

