CEPS – Benchmarking Insights from Steel – Benchmarks and the Environment

Dr. Hans-Jörn Weddige
Head of Climate Change Policy
hans-joern.weddige@thyssenkrupp.com
Benchmarks cannot be seen in isolation but are embedded in systems

Benchmarking and Time
• Are Benchmarks eternally fixed?
• How do Benchmarks evolve?
• How does time affect applicability?

Benchmarking and Competition
• What are Benchmarks worth?
• How do Benchmarks impact competition?
General Elements of a benchmark approach - schematic

Starting point: e.g. average
2008-2012

Distribution of individual installations
Mean transition path

Technological Benchmark

Fundamental benchmark based on technological-scientific aspects

Fundamental Benchmark
New production paradigm
In distant future

ThyssenKrupp Steel
Transition phase
Benchmark phase
Past achievements in Europe Steel Industry (EU15) are already considerable – very early action!

CO_2 emission per ton of finished product
Index 100 for 1975

Source: Eurostat/Eurofer
The Blast Furnace is main CO₂ emitter in steel production
Direct and related emissions account for well over 90%.

Total CO₂/t hot metal: >1516 kg
average 2000 - 2006

Indirect CO₂ emissions caused by use of blast furnace route

ThyssenKrupp Steel
Reduction Agents’ Consumptions already reduced to minimum – no way to go further on this route to reduce CO₂

Consumption of reduction agents near the theoretical minimum of 414 kg C/t\textsubscript{hot metal}*

=> Hot Metal around 1.5 t\textsubscript{CO₂}/t
Finished Steel around 2 t\textsubscript{CO₂}/t

coal

482 kg reduction agents/t\textsubscript{hot metal}

coke (dry)

oil

Source: VDEh, Blast Furnace Committee

ThyssenKrupp Steel

*414 kg C/t\textsubscript{hot metal} according to 465 kg coke/t\textsubscript{hot metal}
Reduction Agents’ Consumptions already reduced to minimum – no way to go further on this route to reduce CO$_2$

Consumption of reduction agents near the theoretical minimum of 414 kg C/t$_{\text{hot metal}}$*

\Rightarrow Hot Metal around 1.5 t$_{\text{CO}_2}$/t

Finished Steel around 2 t$_{\text{CO}_2}$/t

coke (dry)

482 kg reduction agents/t$_{\text{hot metal}}$

Breakthrough Research for Production Paradigm Shift

*414 kg C/t$_{\text{hot metal}}$ according to 465 kg coke/t$_{\text{hot metal}}$

Source: VDEh, Blast Furnace Committee

ThyssenKrupp Steel
Fundamentals of CO2 Emissions
Scientific fundamentals limit possible actions.

\[\text{Fe}_2\text{O}_3 \, \text{& C} \quad \Rightarrow \quad \text{Fe} \, \text{& CO}_2 \]
Fundamentals of CO2 Emissions
Scientific fundamentals limit possible actions.

\[\text{Fe}_2\text{O}_3 \text{ & } \text{C} \Rightarrow \text{Fe} \text{ & } \text{CO}_2 \]

\[\text{Fe}_2\text{O}_3 \text{ & } \text{C} [\text{H, e}^-] \Rightarrow \text{Fe} \text{ & } [\text{CO}_2] \]

a) replace C by H (hydrogen reduction)
b) replace C by e$^-$ (electrolysis)

availability, direct use (natural gas, electricity)
industrially viable process still far away (2050?)
Fundamentals of CO2 Emissions
Scientific fundamentals limit possible actions.

$\text{Fe}_2\text{O}_3 \& \text{C} \Rightarrow \text{Fe} \& \text{CO}_2$

$\text{Fe}_2\text{O}_3 \& \text{C} \ [\text{H}, \text{e}^-] \Rightarrow \text{Fe} \& [\text{CO}_2]$
a) replace C by H (hydrogen reduction)
b) replace C by e\(^-\) (electrolysis)

Availability, direct use (natural gas, electricity)
Industrially viable process still far away (2050?)

$\text{Fe}_2\text{O}_3 \& \text{C} \Rightarrow \text{Fe} \& [\text{CO}_2]$
a) Use Scrap instead of Iron Ore

Limited scrap supply (already \~100\% used)
Fundamentals of CO2 Emissions
Scientific fundamentals limit possible actions.

\[\text{Fe}_2\text{O}_3 \text{ & C} \Rightarrow \text{Fe} \text{ & CO}_2 \]

- \(\text{Fe}_2\text{O}_3 \text{ & C} [\text{H, e}^-] \Rightarrow \text{Fe} \text{ & } [\text{CO}_2] \)
 a) replace C by H (hydrogen reduction)
 b) replace C by e\(^{-}\) (electrolysis)

Availability, direct use (natural gas, electricity)
Industrially viable process still far away (2050?)

- \(\text{Fe}_2\text{O}_3 \text{ & C} \Rightarrow \text{Fe} \text{ & } [\text{CO}_2] \)
 a) Use Scrap instead of Iron Ore

Limited scrap supply (already \(\sim 100\% \) used)

- \(\text{Fe}_2\text{O}_3 \text{ & C} \Rightarrow \text{Fe} \text{ & } [\text{CO}_2] \)
 a) Use CCS

Technology does not yet exist, requires energy

\[\begin{align*}
\text{CO}_2/\text{t} &\quad \text{Energy/t} \\
\text{Reduction of C-based energy} &\quad \text{e.g. coke rates} \\
\text{Additional energy for} &\quad \text{etc.}
\end{align*} \]

Requires non-coal based energy carriers,
But: China, India, USA?
Fundamentals of CO2 Emmissions
Scientific fundamentals limit possible actions.

\[\text{Fe}_2\text{O}_3 \text{ & C} \rightarrow \text{Fe & CO}_2 \]

\[
\begin{align*}
\text{Fe}_2\text{O}_3 \text{ & C } [\text{H, e}^-] & \rightarrow \text{Fe & [CO}_2] \\
a) & \text{ replace C by H (hydrogen reduction)} \\
b) & \text{ replace C by e}^- \text{ (electrolysis)}
\end{align*}
\]

availability, direct use (natural gas, electricity)
industrially viable process still far away (2050?)

\[
\begin{align*}
\text{Fe}_2\text{O}_3 \text{ & C} & \rightarrow \text{Fe & [CO}_2] \\
a) & \text{ Use Scrap instead of Iron Ore}
\end{align*}
\]

limited scrap supply (already ~100% used)

\[
\begin{align*}
\text{Fe}_2\text{O}_3 \text{ & C} & \rightarrow \text{Fe & [CO}_2] \\
a) & \text{ Use CCS}
\end{align*}
\]

technology does not yet exist, requires energy

\[
\begin{align*}
\text{Fe}_2\text{O}_3 \text{ & C} & \rightarrow \text{Fe & CO}_2 \\
a) & \text{ accept necessary CO2 in steelmaking as investment in CO2 saving products downstream}
\end{align*}
\]
ULCOS – Ultra Low CO2 Steelmaking

Breakthrough Technologies for the next generations of steel making processes

Top-gas Recycling Blast Furnace from 2025?

Hlsarna from 2030?

Direct Reduction (ULCORED) from 2035?

Electrolytic Steelmaking (ULCOLYSIS, ULCOWIN) 2050?

However, all solutions rely on commonly availability CCS and CO2-free electricity

ThyssenKrupp Steel
Upscaling of Blast Furnace Concepts takes very long time
ULCOS developments not expected to be applicable immediately…
Upscaling of Blast Furnace Concepts takes very long time
ULCOS developments not expected to be applicable immediately…
Timeframe of Operations much longer than ETS phases

Cokeplants
- Hamborn: 1964 - 2004
- Schwelgern: 2003 - ???

Sinterplants
- Schwelgern 2: 1964 - ???
- Schwelgern 3: 1970 - ???
- Schwelgern 4: 1979 - ???

Blast Furnaces
- HO 4: 1964 - 2008
- HO 8: 2007 - ???
- Schwelgern I: 1973 - 1996
- Schwelgern II: 1993 - ???

Steelplant
- Beeckerwerth: 1962 - ???
- CC1: 74-85, 85-98, 1998 - ???
- CC2: 80-90, 90-01, 2001 - ???
- Bruckhausen: 1969 - ???
- CC1: 79-96, 1996 - ???
- GWA: 1999 - ???

Hot Rolling
- WBW 1: 1964 - ???
- WBW 2: 1966 - ???
- WBW 3 (Bo): 1976 - ???

ETS 3: Availability of ULCOS

ThyssenKrupp Steel
Steel Production and Environmental and Climate Issues

After decades of optimisation very complex process.

ThyssenKrupp Steel
Intelligent Steel Uses taps into huge saving potentials
Examples – Heavy Plate, Hot Rolled, Electrical Steels, Tin Plate

Heat-treated heavy plate for high performance applications

HR with thicker diameters in sour gas qualities

Mobile Cranes: Relation Lifting Capacity to Weight in use raised to 8:1

Supports economic access to oil and gas fields under increasingly difficult conditions

Grain-orientated Electrical Steel for effective energy generation

Tin Plate offers innovation potential for packaging applications

Efficiency up to 99%

Thicknesses of 0.07mm results in extreme demands on deep-drawing capability

ThyssenKrupp Steel
Carbon Leakage must be avoided – free allocation one way

But how comparable are benchmarks?

Preferred Solution:
- Benchmark-based free allocation

ThyssenKrupp Steel
Carbon Leakage must be avoided – free allocation one way

But how comparable are benchmarks?

Preferred Solution:
- Benchmark-based free allocation

Benchmarks:
- 10% best?
- Average performer?
- Political number?
- Allocation process …

ThyssenKrupp Steel
Benchmarks, Cap and Carbon Leakage

Benchmarks are important, but only part of the story…

Climate Issues

• Cap setting
 • Benchmarks to identify the „doable“ (Bottom-up approach)

• Sharing the burden: Sectoral crediting, CDM, etc.
 • Benchmark to identify the reference
Benchmarks, Cap and Carbon Leakage

Benchmarks are important, but only part of the story…

Climate Issues
- Cap setting
 - Benchmarks to identify the „doable“ (Bottom-up approach)
- Sharing the burden: Sectoral crediting, CDM, etc.
 - Benchmark to identify the reference

Competition Issues
- Benchmark-based Allocation
 - Global comparability and competitive level-playing field requires
 - Same benchmarks (but regional particularities?)
 - Same allocation rules (costs and amounts)
- Benchmark-based Border Adjustment Measures
 - Company, Country or Global?
Benchmarks, Cap and Carbon Leakage

Benchmarks are important, but only part of the story…

Climate Issues
- Cap setting
 - Benchmarks to identify the „doable“ (Bottom-up approach)
- Sharing the burden: Sectoral crediting, CDM, etc.
 - Benchmark to identify the reference

Competition Issues
- Benchmark-based Allocation
 - Global comparability and competitive level-playing field requires
 - Same benchmarks (but regional particularities?)
 - Same allocation rules (costs and amounts)
- Benchmark-based Border Adjustment Measures
 - Company, Country or Global?

Technology Issues
- Benchmark CO2 emissions of technologies ($x \frac{t_{CO2}}{t_{product}}$); or
- Benchmark existence of technology (x out of y technologies from list)
Wherever the future leads us,
Steel will bridge the challenges!

Many thanks for your kind attention!

Viaduc de Millau

ThyssenKrupp Steel